TECHNICAL SPEC FOR Stepper

System Model:

Canon FPA 3000 i5 SN 7072885

Tool has been shut down by Litho tech.

Electricity, cooling water, Vacuum and CCA are closed.

Cables between Main unit and power box are still connected, locking kit and demounting for transport to be provided by buyer.

Wafer size: 6 inch

Wafer type: Jeida flat

Chuck type: 6 inch

Reticle changer type: (Canon standard?)

Inline right or left: right

Particle checker (PPC): No

Touch panel type: Canon standard

Options:

Reticle size: 5 inch

Reticle alignment: see specs below

Wafer alignment: see specs below

Auto focus: see specs below

Auto feeder: Yes

Wafer tilt:

Wafer feeder: Yes

Track interface: Yes, tool was used inline, interface is track part

Laser: Hene

Lens data: see below

Stage and U-lens at shutdown

Intensity: 800 mW/cm2

Uniformity: 1.5%

Stage vibration data:

Used for 0.35micron line and space? Y

Chuck maintenance tool: No

Reticle bar code reader: Yes

Cassette bar code reader: No

SW Version:

OS:

Vintage: 2007

Missing/defective parts: none

Canon *FPA-3000i5+*

INSTALLATION CHECK RESULTS

For:

AMI Semiconductor

User ID:

Stepper 12

Installation Team

	The state of the s			
	7072885			
Begin	12-Jul-07			
End	25-Jul-07			
ge	P.Wells / M.Fordham			
	Begin			

- 7	Classification	n Item		Results Spec.		Judge	ge Remark	
	1 Illuminator	interiory	Normal (63,65	16106 w	/m² ≥ 11000W/m³		New Lamp	
	Adjustmen		SiA	7497 w		0		
			SiAII	10699 w/		0	With it 50 flodis	
- 1			SiB	8787 W/		0		
			SP1	16360 w/		0		
)			SP2	17153 W/	m²	0		
		Uniformity	Normal (63,65)	0,484 %	≤ 1.0 %	0	New Lamp	
1			SiA	0,619 %	< 1.0%	0	With in 50 hours	
			SIAII	0,569 %	≤ 1.0%	0		
			SIB	0,637 %	≤ 1.0%	0		
			SP1	0,300 %		0		
			SP2	0,331 %		0		
		Light Integrator	Accuracy	0,58 %	≤ 1.0%	0	80,250,500,1000mse	
		Masking Blade Accuracy	Total	-68 um	≤ +100um	0	50,250,500,1000msec	
			Theta	-251 ppm	≤ 3000ppm	0		
L			Gray Zone	13 um	Range ≤ 60um	0		
	2 Auto Focus	Focus Leveling Repeatability (Static) 0,		0,024 um	3 sigma ≤ 0.08um	0	Management	
	leveling	Leveling Repeatability (Static)	3 sigma X	3,57 ppm	o ogma _ o.ooum	0	Measured 25 Times	
	Performance		3 sigma Y	3,36 ppm	3 sigma ≤ 6ppm	0		
		P. C.		0,08 um	3 sigma ≤ 0.10um	0		
		Leveling Repeatability (Dynamic)	3 sigma X	3,3 ppm	3 sigma ≤ 7ppm	0	32 Shots 3 Wafers	
			3 sigma Y	5,2 ppm		0		
		Tilt Sensor Unev	en Focus	1,77 ppm	4.44	-		
		0		0.0	<u>≤ ±</u> 4ppm	0		
		Global Tilt Measurement Stability	3 sigma X		≤ ±4ppm	0		
			-		≤4ppm	0		
		Global leveling Repeatability		1,5 ppm	049 890.0300	20030		
				2,0 ppm	≤8ppm	0		
		1000	3 sigma Y	1,7 ppm	2000 AVIV	700 J		

		3 iTV		Ka	-7 m	rad		
		Alignmen	I Line Defocus	Kb	-5 m	rad ≤ 15mrad	d 0	,
		Scope	Character	[Kc]	-4 m	rad		
	1			Ka+Kt	1 -12 m	rad ≤ 15mrac	0	
	1	4 Offset For	Reticle Rotation Accuracy		1,4 nn		0	
		Rotation	Reticle Rotatio	n Repeatability	6,0 nn		0	
	\vdash			SRC stability		1 ≤ 0.5ppm		
	1 5	Offset For	Orthog	onality	0,02 ррг		_	
	1	XY Stage	Scaling	Х	0,00 ppr	m	-	1
				Y	0,02 ppr	≤ 0.5ppm	0	1
			Bar Mirror's Bow	Х	-8,4 nm			
3	\vdash			Υ	-4,6 nm	≤ 20nm	0	ŀ
	6	XY Stage	Stepping	XX	14,5 nm			Sample 3 Wafers
		Performand	Accuracy Accuracy	YY	14,8 nm	3 sigma ≤ 35n	m O	data
			Stepping	X	22,2 nm			Sample 1 Wafer
			Repeatability	Υ	12,0 nm	3 sigma ≤ 30nm	m O	data
		Lens Heating	Lens Heating NA:0.63 Sigma:0.65	Focus	0,10 um	≤ 0.30um	0	uata
		- Orio Tiodair	Lens Heating NA:0.52 Sigma:0.60	Focus	0,05 um	≤ 0.30um	0	
I			Distortion	DX	0,029 um		+	
1	1		Normal (63,65)	DY	0,023 um	DX,DY ≤ ±0.040u	m O -	
l	7		CD DOF		1,26 um	≥ 0.9um		
l	1	Lens	T/B DOF		0,64 um	≥ 0.6um	0	
	P	Performance	Field Curvature		-0,05 um	≤ 0.25um	0	
			ISW	0.35um L&S	-0,05 um	≤ 0.25um	0	
	1		IFD		0,14 um	≤ 0.35um	0	
	1		Astigmatism		0,08 um	≤ 0.20um	0	
-	P D-		CD Uniformity		9,6 nm	≤ 35nm	0	
		Pre Alignment Performance		XI	2,1 um			
	1		Mechanical Pre Alignment Accuracy	Xr	2,4 um	3 pigma - 22		
	re			YI	3,2 um	3 sigma ≤ 30um	0	
		+	710	Yr	3,3 um			
	i		TV Pre Alignment	X	1,86 um	- 2	_	
_			Accuracy	Υ	0,295 um	≤ 3 um	0	Max X +Max DR

	9 B/C Sco		e B/S 5 nn					
	Performa	ance	C/S	-3 n		Ave. ≤ 5	nm	O Mode 5 - Mode
		B Scope	Ka	8	m	rad		
		Defocus	Kb	8	mi	<u>≤ ±</u> 20mm	20mrad O	Mode 1
		Character	Kc	. 0	mr	rad <u>≤ +</u> 7mra	d	O Mode 1
		B Scope Defocus	Ka	4	mr		-	0
			Kb	-4		≤ ±20mrs	d (0
		Character	Kc	-4				Mode 2
		B Scope	Ka	-1	-			
		Defocus	Kb	-3		≤ <u>+</u> 20mra	d (
		Character	Kc	0	mra		0	Mode 3
		C Scope	Ka	-3	mra		-	,
**		Defocus	Kb	2	mra	≤ ±20mrac	C	
3		Character	Kc	2	mra			Mode 1
		C Scope	Ka	9	mrac		10	
		Defocus	Kb	16	mrac	≤ ±20mrad	0	
- 1		Character	Kc	3	mrac		-	Mode 2
- 1		C Scope Defocus Character	Ka	1	mrad	==:	0	
- 1			Kb	4	mrad	≤ ±20mrad	0	Mode 3
			Kc	1	mrad		0	
	1	B Scope Waveform	line 2	-1,75		2 _ milad	0	
	C		line 3	-1,77		≤ <u>+</u> 3%	0	Mode 3
		C Scope Waveform	line 2	1,79			-	
			line 3	1,62		≤ ±3%	0	Mode 3
1		TIS	B Scope	1	nm		0	
1			C Scope	-7	nm	≤ <u>+</u> 10 nm		
		Baseline Stability	BLX	-	nm		+ 1	
L			BLY	-	nm	3 sigma ≤ 30nm	0	Measured 50 Times
1	0 ALFC	Measurement Repeatability		0,049		3 sigma ≤ 0.1um	0	I Cide Chiny
1	1 Auto	He-Ne AGA Overlay	X	11	nm	m +3 sigma	1	L Side ONLY 2 Pts./32 shot
	Alignment Accuracy	Mode 1 - Stp 12 to Stp 9	Υ		m	≤ 90nm	0	5 wafers
	locuracy	He-Ne AGA Overlay Mode 2 - Stp 12 to Stp 9	X		ım	[m]+3 sigma	0	2 Pts./32 shot
		Broad Band AGA Overlay	X	- 00	m	≤ 90nm	3	5 wafers
L		Mode 4 - Stp 12 to Stp 9	Y	00	m	m +3 sigma	0	2 Pts./32 shot
12	Throughput		32shot 90msec shutter time	4.0.0	_	≤ 90nm 108 wafers / hour	0	5 wafers
13	Reticle Alignm	ent	ROC	0,002 ur	_	≤ 0.01um	0	Tilt On
14	Open Frame			Clear			0	
15	Reliability	Wafer Cycling		500	-	Clear No Trouble	0	1.02eth
		Reticle Cycling		75	-	No Trouble	0	500 Wfs.With AGA
		-70	-	75		No Trouble	0	75Reticles

Photos to Collect

- All 4 sides
- Loader
- Chuck
- Cameras
- Control panel
- Chamber
- Robot
- Inside all of the cabinets (PCB's)
- Electronic racks (inside the boards as well)
- All electronic in/outlets
- Serial plate
- Spare parts, manuals (if any)